Ice-lens formation and geometrical supercooling in soils and other colloidal materials.
نویسندگان
چکیده
We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates.
منابع مشابه
Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements
Interfacial undercooling in the complex solidification of colloidal suspensions is of significance and remains a puzzling problem. Two types of interfacial undercooling are supposed to be involved in the freezing of colloidal suspensions, i.e., solute constitutional supercooling (SCS) caused by additives in the solvent and particulate constitutional supercooling (PCS) caused by particles. Howev...
متن کاملMorphological instability of a non-equilibrium ice–colloid interface
We assess the morphological stability of a non-equilibrium ice–colloidal suspension interface, and apply the theory to bentonite clay. An experimentally convenient scaling is employed that takes advantage of the vanishing segregation coefficient at low freezing velocities, and when anisotropic kinetic effects are included, the interface is shown to be unstable to travelling waves. The potential...
متن کاملMorphological instability in freezing colloidal suspensions
We present a linear stability analysis of a planar ice interface during unidirectional solidification of a hard-sphere colloidal suspension. We find that the interface can become unstable due to constitutional supercooling, yielding a new mechanism for pattern formation in colloidal systems. The interfacial stability is shown to depend strongly on the size and concentration of the particles. In...
متن کاملSegregated Ice Growth in a Suspension of Colloidal Particles.
We study the freezing of a dispersion of colloidal silica particles in water, focusing on the formation of segregated ice in the form of ice lenses. Local temperature measurements in combination with video microscopy give insight into the rich variety of factors that control ice lens formation. We observe the initiation of the lenses, their growth morphology, and their final thickness and spaci...
متن کاملCharacterization and recombinant expression of a divergent ice nucleation protein from 'Pseudomonas borealis'.
Isolates of 'Pseudomonas borealis' were recovered after ice-affinity selection of summer-collected soils. 'P. borealis' DL7 was further characterized and shown to have ice nucleation activity (INA), a property that allows the crystallization of ice at temperatures close to the melting point, effectively preventing the supercooling of water. INA was optimally detected after culturing at temperat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2011